The connected component of the partial duplication graph

نویسنده

  • Jonathan Jordan
چکیده

We consider the connected component of the partial duplication model for a random graph, a model which was introduced by Bhan, Galas and Dewey as a model for gene expression networks. The most rigorous results are due to Hermann and Pfaffelhuber, who show a phase transition between a subcritical case where in the limit almost all vertices are isolated and a supercritical case where the proportion of the vertices which are connected is bounded away from zero. We study the connected component in the subcritical case, and show that, when the duplication parameter p < e−1, the degree distribution of the connected component has a limit, which we can describe in terms of the stationary distribution of a certain Markov chain and which follows an approximately power law tail, with the power law index predicted by Ispolatov, Krapivsky and Yuryev. Our methods involve analysing the quasi-stationary distribution of a certain continuous time Markov chain associated with the evolution of the graph.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Research Statement of Linyuan

Dr. Lu made major contributions to the theory of large sparse random graphs — a new direction in graph theory for modeling many real-world graphs. Together with Chung (and other collaborators), Lu introduced and studied several random graph models, including models using preferential attachment scheme, partial duplication models, random graphs with expected degree sequence, and hybrid models. T...

متن کامل

Infinite limits of the duplication model and graph folding

We study infinite limits of graphs generated by the duplication model for biological networks. We prove that with probability 1, the sole nontrivial connected component of the limits is unique up to isomorphism. We describe certain infinite deterministic graphs which arise naturally from the model. We characterize the isomorphism type and induced subgraph structure of these infinite graphs usin...

متن کامل

The edge tenacity of a split graph

The edge tenacity Te(G) of a graph G is dened as:Te(G) = min {[|X|+τ(G-X)]/[ω(G-X)-1]|X ⊆ E(G) and ω(G-X) > 1} where the minimum is taken over every edge-cutset X that separates G into ω(G - X) components, and by τ(G - X) we denote the order of a largest component of G. The objective of this paper is to determine this quantity for split graphs. Let G = (Z; I; E) be a noncomplete connected split...

متن کامل

Nordhaus-Gaddum type results for the Harary index of graphs

The emph{Harary index} $H(G)$ of a connected graph $G$ is defined as $H(G)=sum_{u,vin V(G)}frac{1}{d_G(u,v)}$ where $d_G(u,v)$ is the distance between vertices $u$ and $v$ of $G$. The Steiner distance in a graph, introduced by Chartrand et al. in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph $G$ of order at least $2$ ...

متن کامل

Finite groups admitting a connected cubic integral bi-Cayley graph

A graph   is called integral if all eigenvalues of its adjacency matrix  are integers.  Given a subset $S$ of a finite group $G$, the bi-Cayley graph $BCay(G,S)$ is a graph with vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(sx,2)}mid sin S, xin G}$.  In this paper, we classify all finite groups admitting a connected cubic integral bi-Cayley graph.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017